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Abstract We apply the Monte Carlo renormalization p u p  (MCRG) analysis of self-avoiding 
walks (SAWS) on fractals to calculate the critical exponent y ,  assccisted with the tow number 
of distinct SAWS. In the case of the Sierpimki gasket family of fmctals (whose memben are 
labelled by an integer b, 2 < b < m) we have calculated y for 2 < b < 80.~ Ow MCRG results 
deviate al most 0.2% from the available emct results (2 < b < 8). The entire set of ow results 
demonsuates that y .  being always larger than the Euclidean value 2, monotonically increases 
with b. . ,  

Do critical exponents of the self-avoiding walks (SAWS) on fractals approach the Euclidean 
values when the underlying fractal lattices become almost Euclidean? This' interesting 
question can be attacked~in a systematic way by studying SAWs on families of fractals whose 
fractal (df) and spectral (d,) dimensions gradually approach the corresponding Euclidean 
values. This kind of study was undertaken in [I] in the case of the Sierpinski gasket 
(SG) family of fractals, whose members can be labelled by an integer b (2 < b < 03) 

(when b + 03, both df and d, tend to their Euclidean value 2). By applying an exact 
renormalization group (RG) technique [l] critical exponents of SAWS were calculated for 
2 < b < 8. It turned out that the critical exponent y (which governs, together with the 
connectivity constant p, the scaling law CN - -pNNY- '  for the total number CN of distinct 
SAWS of N steps) was always larger than the Euclidean value y = $ [2] and displayed 
a clear sign of monotonic increase with b. The exact RG calculation of y beyond b = 8 
required an unavailable computer time (roughly speaking, to get y forb = 9 would take 
more than 85 days of continuous operating of the IBM 3090 mainframe). In this work we use 
the Monte Carlo renormalization group (MCRG) method, for (2 < b < SO), and demonstrate 
that y continues to depart from 2, that is, it continues to increase monotonically beyond 
b = 8. . 

In what follows we shall first explain the way we calculated y, and then we shall present 
our findings, together with a discussion concerning their relevance to the current knowledge 
of SAWs on fractals. The MCRG method for calculating y is a generalization of a similar 
method applied to calculating the critical exponent U of SAWS for the extended sequence of 
the SG fractals (2 < b < 80) [3]. 1t.starts by recalling the fact that each member of the SG 
fractal family can be constructed in stages. At the initial stage (r  = 1) of the construction 
there is an equilateral triangle (generator) that contains b* identical smaller hiangles of unit 
side length, out of which only the upper-oriented are physically present. The subsequent 
fractal stages are constructed self-similarly, so that the complete fractal is obtained in the 

0305470/93/143393+05$07.50 @ 1993 IOP Publishing Lld 3393 



3394 I &vi6 and S MiloSeviC 

F b r e  1. Schematic representation of the h e  restricted pasition functions (for an rlk.tage 
fractal constnrction) used in the calculation of the SAW critical exponent y .  The interior stnrcture 
of the rth-order fractal uiangle is not shown (it is manifested by the wiggles of the SAW paths). 

limit r -+ CO. In the case of the critical exponent y ,  we need the three restricted partition 
functions A'", B('), and C"), that represent possible configurations of SAW within the rth 
stage fractal construction (see figure 1). It can be verified [ I ]  that these functions satisfy 
the following recursion relations: 

where IN is number of all possible SAWS of N steps that traverse the fractal generator, while 
art a2, CI, and CZ, are some polynomials in terms of Accepting the above relations 
as the RG equations, the critical exponent y can be expressed [ l ]  in the following way: 

where AI  is the eigenvalue of the RG equation (1) and A2 is given by 

hz = 4 al(B*) + CZ(B*) + J[al(B*) - cz(B*)I2 + 4q(Bi)a2(B*)  I 
with B* being the fixed-point value of (1). 

In the framework of the MCRG approach, one starts by analysing (1) for r = 1, and, for 
the sake of simplicity writes B' and B ,  instead of B"' and B'O), respectively. Thus, for the 
one-step weight B = 1, B' appears to be the sum of all possible SAWS (of various lengths) 
that traverse the fractal generator. Furthermore, for arbitrary B < 1, the quantity E' can be 
considered as the grand-canonical partition function for the ensemble of all pertinent SAWS 
[3,41. Consequently, A,  = (dB'/dB)Ip can be equated with the ensemble average number 
of steps (N(B*) ) ,  made by all possible SAWS that traverse the fractal generator (assuming 
that each step of walks is weighted by B*). For specific calculations, it is important that both 
quantities B* and ( N ( B * ) )  can be directly measured in the Monte Carlo (MC) simulation. 
In a quite similar way, the polynomials al ,  a2, CI, and CZ, can be viewed as four grand- 
Canonical partition functions of four different SAW configurations (see figure 2), and their 
values at Bf can be directly measured in the MC simulations. The latter measurement can 
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Figure 2. A diagrammatic representation of the four possible SAW confrgUrarions whose statistical 
weights (for the rth stage fractal conmction) are given by the terms on tk right-hand si& of 
(2) (the fin1 m w  of this figure) and (3) (ihe second mw). The full wiggled segments correspond 
to the polynomials q(B['-'J), a ~ ( 8 ( ~ - ' ) ) ,  c1(8('-')), and ~(8( ' - ' ) ) .  

Figure 3. The exact (open triangles) and MCRG (full triangles) results for ihe critical exponent 
y of SAWS on the SG Franals. The ermr ban relaled to Lhe MCRG results lie within the drawn 
triangles. The horizontal broken line represents the Euclidean value y = 3. 

be accomplished by recording all realizations of the appropriate four SAW configurations (on 
the fractal generator) for each MC simulation, and, finally, by dividing particular sums of 
the four recorded numbers by the total number of simulations. For instance, to determine 
al(B*), we let the walker start his walking (with the one-step weight B*) at one fixed comer 
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of the fractal generator, and record all possible walks that are terminated by entering a unit 
triangle (see figure 2). We repeat this M c  simulation L times and finally we obtain nl(B*) 
by dividing the sum of recorded numben of walks by L. Therefore, all requisite quantities 
that appear in (4) and (5) can be obtained through the MC simulations, and, thereby, we can 
find specific values of the SAW critical exponent y. Our results are presented in table 1 and 
figure 3. 
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Table 1. The MCRG (2 4 b < 80) results obtained in this work for the RG eigenvalue A2 and 
the SAW cdtical exponent y. For the sake of comparison, we also give the available exact Ra 
results [l] for y ,  for 2 < b < 8. To i l l u s m  the amount of the computer WO* needed for 
determination of Az. we quote here that forb = 80; for instance, if was necessary to run a pc 
With the Intel 80486 processor for 170 hours. Finally, the table is completed by quoting values 
of B* and AI [3] that wnc used in (4) and (5) to calculate y.  

Number of MC 

0.61825 iO.wO61 
2 

3 

4 

5 

6 

7 

8 

9 
IO 
12 
15 
17 
20 
22 
25 
26 
27 
30 
35 
40 
50 
60 
70 

exact 
5 x 10’ 
exact 
5 x 16 
exact 
5 x IO’ 
exact 
5 x 105 
exact 
5 x IO’ 
exact 
5 x 10’ 
exact 
5 x 10s 
5 x 16 
5 x 10’ 
5 105 
5 x 105 
5 x 105 
5 x 1 6  
5 x 105 
5 x I 6  
5 x I 6  
5 x IO’ 
5 x IO’ 
5 105 
5 x IO’ 
5 x 10s 
5 x 105 
5 x  IO’ 

os51 37 i o.wO44 

0.50658 i 0.W34 

0.47455 f0.00028 

0.45091 fO.W24 

0.43240 iO.00021 

0.41780f0.00019 
0.40574 f 0.000 17 
0.39586 iO.00007 
0.38037 iO.WO13 
0.36396i0.000 11 
0.35593 i O . W O 8  
0.34681 i0.00006 
0.341 97 iO.00008 
0.33602 iO.00008 
0.33444iO.WO07 
0.33285fO.WOO6 ~ 

0.32876 i 0.00007 
0.32350 fO.00008 
0.31936 -1.0.00006 
0.313 96 f 0.00007 
0.31011 iO.oWO6 
0.30745 i0.00006 1 

2.382 i 0.001 

3.992 * 0.003 

5.805 i 0.004 

7.790 i 0.006 

9.942 i 0.008 

12.23 i 0.01 

14.67 & 0.01 
17.21 10.01 
19.908 f 0.008 
25.64i 0.02 
34.95 i 0.03 
41.79 f 0.03 
52.59 rt 0.03 
60.31 5 0.05 
72.44 5 0.06 
76.61 i 0.07 
81.04i 0.06 
94.33 f 0.08 

117.6 i O . 1  
142.9 i 0.1 
197.8 f 0.1 
256.7 i 0.2 
322.1 f 0.6 

b realization B‘ Y 

1.3752 
1.3750 i 0.0026 3.146 & 0,002 

6.641 i 0,008 

11.67 i 0.02 

18.40 i 0.04 

27.18 i 0.06 

38.0f0.1 

51.5*0.2 
67.3 i 0.2 
86.9 i 0.3 

135.41 0.6 
2 3 9 i l  
3 3 3 f 2  
523 f 4 
702 I 6  

1WOi10 
1130-1.10 
1260i10 
1700fu)  
2830i40  
4120i60  
9 500 f 200 

I6 100 i 400 
25900 i 700 

1.4407 
1.4410 i 0.0024 
1.4832 
1.4852 * 0.0024 
1.5171 
1.5184i0.0025 
1.5467 
13500 f 0.0026 
1.5738 
1.5759 i 0.0027 
1.5991 
1.6015 i 0.0028 
1.6202 iO.0030 
1.6454f 0.OM8 
1.6827 +0.0033 
1.7347 i 0.0037 
1.7641 i0.0038 
1.8096 i 0.0041 
1.8473 i 0.0045 
1.8762 +. 0 . W  
1.8908 f 0.0050 
1.8973 i 0.0050 
1.9207 -1. 0.0055 
1.9816 i 0.0061 
2.0024 i 0.0068 
2.1133i0.0077 
2.1380 f 0.0086 
2.1658 * 0.0101 

80 5 x 105 0.30546i0.00006 ’ 391.610.7 43000flOW 2.2177io.0119 

The data given in table 1 and figure 3 reveal several interesting facts. First, one can 
notice from table 1 that the MCRG results, obtained in this work, deviate at most 0.2% 
from the exact RG results found [l] for 2 < b < 8. Next, we observe that all values of 
y .  from the entire set 2 < b < 80, .%e larger than the Euclidean value $ predicted [2] 
for two-dimensional regular lattices. In addition, it appears that the available values of y 
display a monotonic increase with b, which leads one to assume that y will continue to 
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increase beyond b = 80. This assumption is in accord with the finite-size scaling argument 
[51 which predicts that y. for the SG fractals, should converge to the non-Euclidean value 

from below, when b --f 00. Thus our results offer a support to the finite-size scaling 
argument (although the range of results is still not sufficiently large to allow a numerical 
test of the asymptotic behavior of y). 

The established behaviour of y for the SO fractals is in accord with the results obtained 
for the plane-filling (PF) family of fractals, which also displayed a monotonic increase 
(above the Euclidean value) for the fractal enumerator b being between 3 and 121 [61. 
However, both groups of results (for the SG and PF fractals) are in disagreement with the 
various arguments [7-10] which state that y for SAWS on the critical percolation clusters 
is not different from y of SAWs on fully occupied Euclidean lattices. At this point, it may 
be argued that the SG and PF fractals are not archetypes of the percolation clusters, and 
that the observed disagreement may stem from the basic difference between deterministic 
and random fractals. Yet, in view of the fact that the critical exponents of SAWs on the 
percolation clusters still comprise a controversial research problem, the noted disagreement 
with the exact and MCRG results calls for additional studies. 
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