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" Abstract. We apply the Monte Carlo renormalization group (MCRG) analysis of self-avoiding
walks {Saws) on fractals to calculate the critical exponent ¥, associated with the total number
of distinct saws. In the case of the Sierpinski gasket family of fractals (whose members are
labelled by an integer 5, 2 £ b < oo} we have calculated y for 2 £ & < 30. Our MCRG results
deviate at most 0.2% from the available exact results (2 £ b < 8). The entire set of our resuits
demonstrates that ), being always larger than the Euclidean valye 4 ?z, monotonically increases
with b. ‘ .

Do critical exponents of the self-avoiding walks (SAWs) on fractals approach the Euclidean
values when the underlying fractal lattices become almost Euclidean? This interesting
question can be attacked in a systematic way by studying SAWs on families of fractals whose
fractal (dy) and spectral (d) dimensions gradually approach the corresponding Buclidean
values. This kind of study was undertaken in [1] in the case of the Sierpinski gasket
(sG) family of fractals, whose members can be labelled by an integer » (2 € & € )
{when & — o0, both d¢ and d; tend to their Eoclidean value 2). By applying an exact
renormalization group (RG) technique [1] critical exponents of Saws were calculated for
2 € b £ 8. It turned out that the critical exponent y (which governs, together with the
connectivity constant z, the scaling law Cy ~ p¥ N¥~! for the total number Cy of distinct
saws of N steps) was always larger than the Euclidean value y = % [2] and displayed
a clear sign of monotonic increase with . The exact RG calculation of ¥ beyond b = 8
required an unavailable computer time (roughly speaking, to get ¥ for b = 9 would take
maore than 85 days of continuous operating of the IBM 3090 mainframe). In this work we use
the Monte Carlo renormalization group (MCRG) method, for (2 < & < 80), and demonstrate
that y continues to depart from 22 32, that is, it continues to increase monotonically beyond
b=38§,.

In what follows we shall first explam the way we calculated y, and then we shall present
our findings, together with a discussion concerning their relevance to the current knowledge
of saWs on fractals. The MCRG method for calculating ¥ is a generalization of a similar
method applied to calculating the critical exponent v of sAws for the extended sequence of
the SG fractals (2 < b < 80) [3]. It.starts by recalling the fact that each member of the SG
fractal family can be constructed in stages. At the initial stage (r = 1) of the construction
there is an equilateral triangle (generator) that contains 4 identical smaller triangles of unit
side length, out of which only the upper-oriented are physically present. The subsequent
fractal stages are constructed self-similarly, so that the complete fractal is obtained in the
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Figure 1. Schematic representation of the three restricted pastition functions {for an rth-stage
fractal construction) used in the calculation of the saw critical exponent y. The interior structure
of the rth-crder fractal triangle is not shown (it is manifested by the wiggles of the saw paths).

limit # — cc. In the case of the critical exponent 7, we need the three restricted partition
functions AT, B¥), and C, that represent possible configurations of SAW within the rth
stage fractal construction (see figure 1). It can be verified [1] that these functions satisfy
the following recursion relations:

bb+1)/2 N
B = Y In(B") (1)
N=b
A(r) =a (B(r—i))A(r—l) +a2(g(r—1))c(r—1) (2)
C(r) = (Bfr-——l))A(r-l) + Cz(B(r—l))C(r—l) (3)

where Iy is number of all possible SAWs of N steps that traverse the fractal generator, while
ai. @2, €1, and ¢z, are some polynomials in terms of B!, Accepting the above relations
as the RG equations, the critical exponent ¥ can be expressed [1] in the following way:

_ In@A}/b(b + 1)) |
- In iy ) ' @

where A; is the eigenvalue of the RG equation (1) and A, is given by

do = %[a; (B%) +c2(B") +y/[ar(B*) — ca( BT + dey (B‘*)az(B*)] (5)

with B* being the fixed-point vaiue of (1}.

In the framework of the MCRG approach, one starts by analysing (1) for r = 1, and, for
the sake of simplicity writes B’ and B, instead of B¢V and B'%, respectively. Thus, for the
one-step weight B = 1, B’ appears to be the sum of all possible sAWs (of various lengths)
that traverse the fractal generator. Furthermore, for arbitrary B £ 1, the quantity B’ can be
considered as the grand-canonical partition function for the ensemble of all pertinent SAWs
[3,4]. Consequently, A, = (dB’/dB)|g- can be equated with the ensemble average number
of steps (N(B*)}, made by all possible 5AWs that traverse the fractal generator (assuming
that each step of walks is weighted by B*). For specific calculations, it is important that both
quantities B* and {N(B*)) can be directly measured in the Monte Carlo (MC) simulation.
In a quite similar way, the polynomials a;, @2, ¢1, and ¢, can be viewed as four grand-
canonical partition functions of four different SAW configurations (see figure 2), and their
values at 8* can be directly measured in the MC simulations. The latter measurement can
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Figure 2. A diagrammatic representation of the four possible saw configurations whese statistical
weights (for the rth stage fractal construction) are given by the terms on the right-hand side of
(2) (the first row of this figure) and (3) {the second row). The full wiggled segments correspond
to the polynomials a;{BY=1), az(BC=M, c1(B¥~1y, and c2(BT~1).
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Figure 3. The exact (open triangles) and MCRG (full triangles) results for the critical exponent
v Of 5aWs on the SG fractals. The error bars related to the MCRG resulls lie within the drawn
triangles. The horizontal broken line represents the Euclidean value y = %.

be accomplished by recording all realizations of the appropriate four SAW configurations (on
the fractal generator) for each MC simulation, and, finally, by dividing particular sums of
the four recorded numbers by the total number of simulations. For instance, to determine

a1(B*), we let the walker start his walking (with the one-step weight B¥) at one fixed corner
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of the fractal generator, and record all possible walks that are terminated by entering a unit
triangle (see figure 2). We repeat this MC simulation L times and finally we obtain a;(B*)
by dividing the sum of recorded numbers of walks by L. Therefore, all requisite quantities
that appear in (4) and (5) can be obtained through the MC simulations, and, thereby, we can
find specific values of the SAW critical exponent y. Our results are presented in table 1 and
figure 3.

Table 1. The MCRG (2 £ b < 80) results obtained in this work for the rG eigenvalue Az and
the saw critical exponent ¥. For the sake of comparison, we also give the avaifable exact RG
results [1] for v, for 2 < & € 8. To ilustrate the amount of the computer work needed for
determination of A2, we quote here that for & = 80; for instance, it was necessary to run a p¢
with the Intet 80486 processor for 170 hours. Finally, the table is completed by quoting values
of B* and A [3] that were used in (4) and (5) to calculate y.

Number of MC
b realization B™ Al . Az ¥
2 exact 1.3752
5x10° 0.61825 £0.00061 2.382 £ 0.001 3.146 20002 1.3750 £ 0.0026
3 exact ; 1.4407
5x 1P 0.55137 £0.00044 3.892 £ 0.003 6.641 £0.008  1.4410£0.0024
4 exact 1.4832
5x10° 0.50658 £ 0.00034 5.8305 £ 0004 11.67 £ 0.02 1.4852 £ 0.0024
) exact 1.5171
5% 10° 0.47455 £ 0.00028 7.790 £ 0.006 18.40 £ 0.04 1.5184 £ 0.0025
6 exact 1.5467
5 x 10° (.45091 £ 0.00024 9.942 +0.008 27.18£ 0.06 1.5500 £ 0.0026
7 exact , 1.5738
5 x 10° 043240 4-0.00021 1223400 38.0+0.1 1.5759 £0.0027
8 exact 1.5991
5 % 10° 041780 4 0.00019 14.67 £ 0.01 51502 1.6015 £ 0.0028
9  5x10° 0.40574£0.00017  17.21£0.01 67.3+02 1.6202 = 0.0030
i0 5% 10% (.395 86 £ 0.00007 19.908 +0.008 86.9+0.3 1.6454 + 0.0028
12 5x10° 0.38037 £ 000013 25.64 +0.02 13544+ 0.6 1.6827 £ 0.0033
15 5% 107 0.36396 4=0.000 11 3495+ 003 239%1 1.7347 £ 0.0037
i7 5% 10° 0.35593 +0.00008 41.79 3 0.03 333£2 1.7641 £ 0.0038
20 5% 10° 0.34681 £ 0.00006 ~ 52.55%+0.03 52344 1.8096 = 0.0041
22 5 x 105 0.34197 +=0.000 08 60.31 =0.05 70246 1.8473 4= 0.0045
25 5 x 10° 0.33602 £ 0.00008 7244 +£0.06 10600+ 10 1.8762 £ 0.0048
26 5% 10° 0.33444 £0.00007 76.61 =+ 0.07 1130410 1.8908 = 0.0050
27 5% 10° 033285 +£0.00006 - 81.04£0.06 1260410 1.8973 £ 0.0050
30 5x10° 0.32876 £ 0.00007 94,33 £ 0,08 1700£20 1.9207 £ 0.0055
35 5x 107 0.32350 £ 0.00008 "117.640.1 2830140 1.9816  0.0061
40 5% 107 031936 £ 0.00006 1429£0.1 4120 £ 60 2.0024 £ 0.0068
50 5% 10° 0.31396+0.00007 197801 95004200 2.1133 £ 0.0077
60 5x10° 031011 £0.00006 236.730.2 16 100 £ 400 2.1380 £ 0.0086
70 5x 10° 0.30745 £0.00006 322106 25900 £ 700 2.1658 &£ 0.0101
80 5% 10° T 030546 £0.00006 391607 43000 £ 1000 22177 £ 0.0119

The data given in table 1 and figure 3 reveal several interesting facts. First, one can
notice from table 1 that the MCRG results, obtained in this work, deviate at most 0.2%
from the exact RG results found [1] for 2 < b € 8. Next, we observe that all values of
¥, from the entire set 2 < b < 80, are larger than the Euclidean value %%’ predicted 2]
for two-dimensional regular lattices. In addition, it appears that the available values of y
display a monotonic increase with b, which leads one to assume that y will continue to
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increase beyond & = 80. This assumption is in accord with the finite-size scaling argument
[5] which predicts that y, for the $G fractals, should converge to the non-Euclidean value
-133‘23 from below, when & — oo. Thus our results offer a support to the finite-size scaling
argument (although the range of results is still not sufficiently large to ailow a numerical
test of the asymptotic behavior of y).

The established behaviour of y for the SG fractals is in accord with the results obtained
for the plane-filling (PF) family of fractals, which also displayed a monotonic increase
(above the Euclidean value) for the fractal enumerator b being between 3 and I2I [6).
However, beth groups of results (for the SG and PF fractals) are in disagreement with the
various arguments [7—10] which state that » for SAWs on the critical percolation clusters
is not different from y of saws on fully occupied Euclidean lattices. At this point, it may
be argued that the SG and PF fractals are not archetypes of the percolation clusters, and
that the observed disagreement may stem from the basic difference between deterministic
and random fractals. Yet, in view of the fact that the critical exponents of SAWs on the
percolation clusters still comprise a controversial research problem, the noted disagreement
with the exact and MCRG results calls for additional studies.
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